

# Едина среда электрического проектирования распределительных систем при создании сложных технических изделий

Матвеев Георгий Александрович

Менеджер продукта САПР «Макс»







## Цифровой актив Корпорации «Промтех»

Разработчик линейки продуктов для проектирования и расчетов кабельных сетей и трубопроводных систем

Разработчик САПР, функционирующих на отечественных ОС и процессорах

Интегратор комплексных отечественных решений в области разработки сложных изделий на всех этапах жизненного цикла изделий

Участник Консорциума средств, ресурсов и технологий производства высокотехнологичной продукции «Базис», АРРП «Отечественный софт»

Участник Консорциума разработчиков САD/САЕ-систем (под эгидой ГК Росатом)

Партнер консорциума «РазвИТие» (под эгидой АСКОН)





















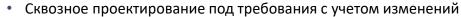








# Собственные разработки








# САПР МАКС

РОССИЙСКОЕ РЕШЕНИЕ ДЛЯ АВТОМАТИЗАЦИИ ПРОЕКТИРОВАНИЯ КАБЕЛЬНЫХ СЕТЕЙ И ТРУБОПРОВОДНЫХ СИСТЕМ



- Интеграция с 3D-CAD, PDM/PLM
- Подготовка производства
- Испытания на тестирующих комплексах
- Многопользовательский режим работы



# ГАЛС

СИСТЕМА
АВТОМАТИЗИРОВАННОГО
ПРОЕКТИРОВАНИЯ СУДОВЫХ
ЭЛЕКТРИЧЕСКИХ ТРАСС И ТРУБОПРОВОДОВ

- Цикл «разработка монтаж испытания»
- Цифровая модель данных
- Принцип модульности
- Организация габаритов трасс
- Расход кабелей, формирование транспортного массива
- Параллельный инжиниринг



# Надежность

ПРОГРАММНЫЙ КОМПЛЕКС ПО РАСЧЕТУ ПОКАЗАТЕЛЕЙ НАДЕЖНОСТИ И ОТКАЗОБЕЗОПАСНОСТИ

- Расчет показателей надежности и отказобезопасности разрабатываемых систем
- Автоматизированное формирование отчетной документации



# MAKC.EDA

СИСТЕМА ПРОЕКТИРОВАНИЯ ПЕЧАТНЫХ ПЛАТ

- Схемотехника, топология и трассировка плат
- Инженерные расчеты
- Производственные данные
- Импорт из аналогичных систем



# Решения АО «Цифровая мануфактура»





Реализация подхода сквозного проектирования в программах создания новых самолетов, вертолетов, ракет, кораблей, атомных реакторов, электростанций и т.д.



Реализация стратегии импортозамещения части замены следующего программного обеспечения:

E3.series (Германия, Япония)

Mentor Capital (США)

**CADMATIC Electrical** (Нидерланды)

IGE+XAO SEE Electrical Expert (Франция)

Creo Schematics (США)

Altium Designer (США, Австралия)

RAM Commander (Израиль)

Teamcenter Manufacturing (США)











# Обеспечение поддержки процессов ЖЦИ





### Требования




- Протоколы сопряжения
- Технические требования
- Эксплуатационные ограничения
- Компоновочные требования
- Сертификационные требования
- Импорт НСИ

### Проектирование



- Разработка схем
- Автоформирование КД
- Подготовка извещения об изменении
- Проектирование печатных плат
- · Трассировка в 3D
- Интеграция с РDМ

# Производство



- Шаблоны плазов
- Программы резки и маркировки проводов
- Сценарии тестирования
- Расчет количества, подбор типоразмера бирок
- Программы для трубогибочных станков

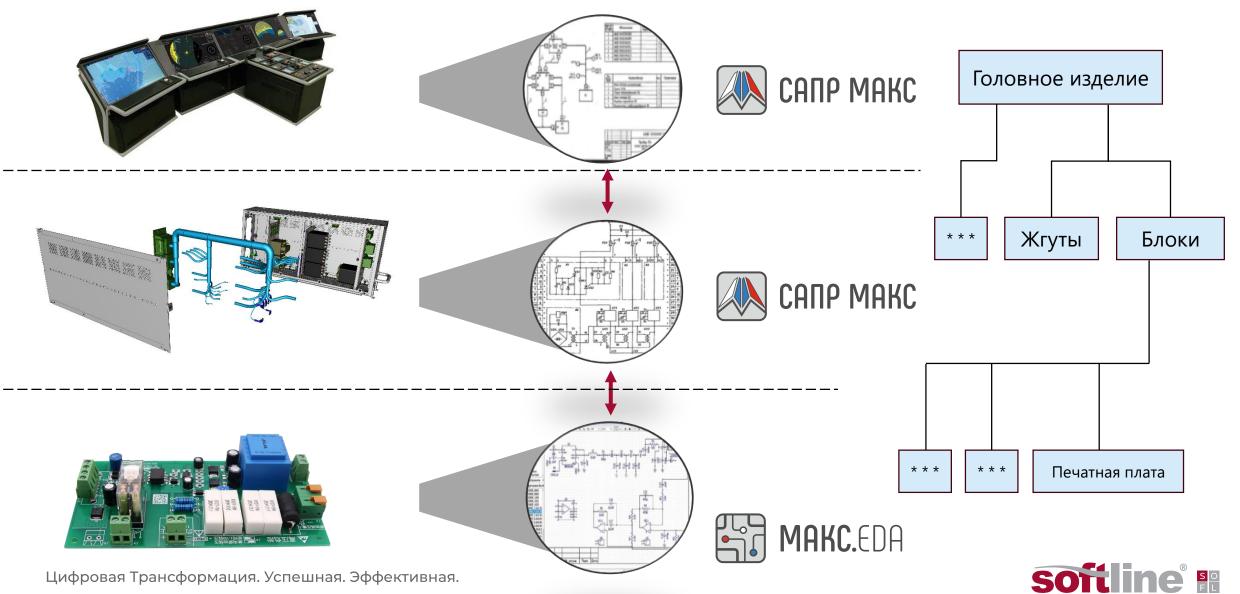
#### Испытания



- Монтаж БКС
- Тестирование БКС

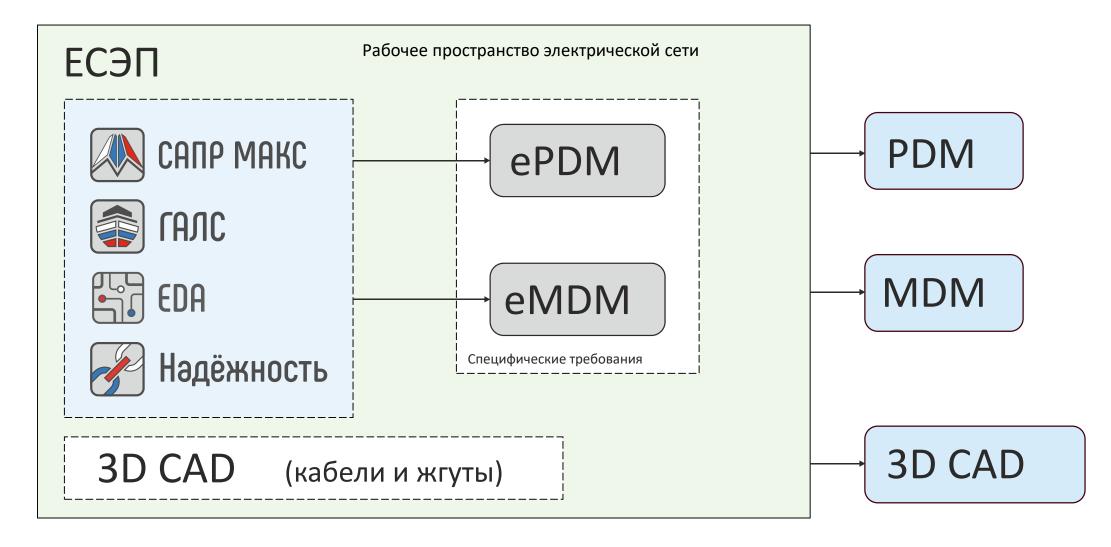
# Эксплуатация





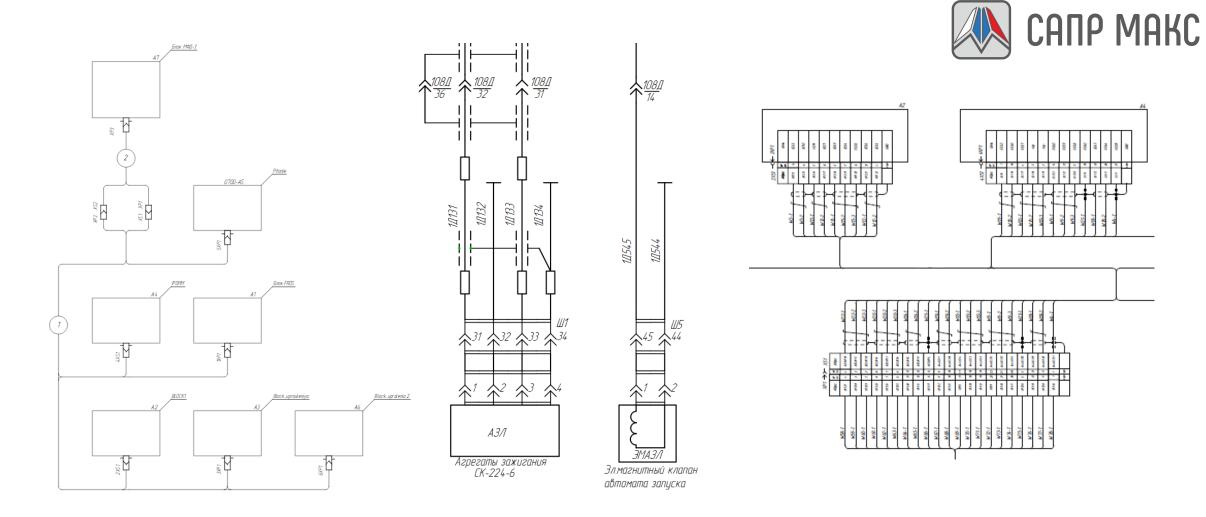



# Единая среда электрического проектирования (ЕСЭП)









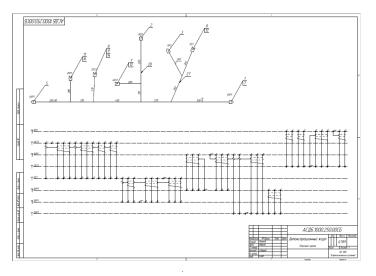




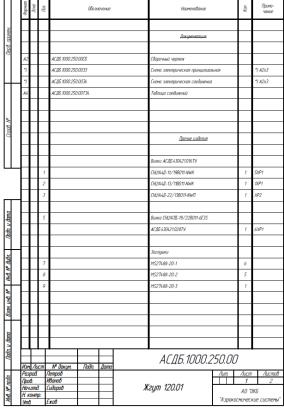





## Автоформирование КД





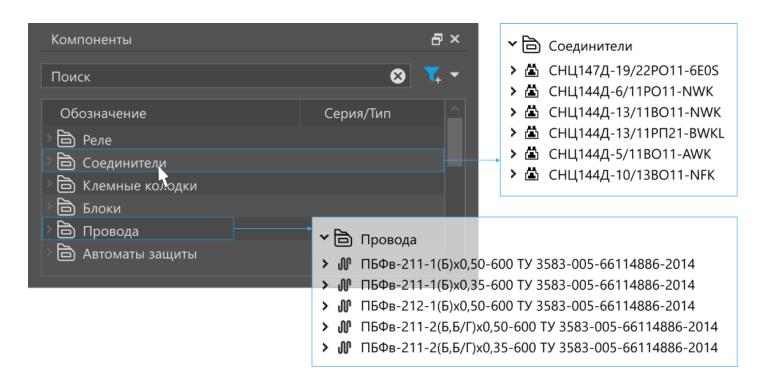


Цифровая модель данных в САПР «Макс» позволяет не только получить полное представление о составе и структуре проектируемого изделия, но и автоматически сформировать конструкторскую документацию в полном соответствии с электронной структурой изделия

Система позволяет автоматически формировать следующие конструкторские документы, согласно ГОСТ ЕСКД:

- Таблица соединений
- Спецификация
- Сборочный чертеж
- Ведомость покупных изделий,
- Ведомость содержания драг. металлов



| Hit. N                | node flods  | и дама             | Взам ин      | ON M       | 2 Nº Apilo      | /lodn     | u da        | 102          |                                         |              |           |      |             |
|-----------------------|-------------|--------------------|--------------|------------|-----------------|-----------|-------------|--------------|-----------------------------------------|--------------|-----------|------|-------------|
| i i                   | Обозначение | а                  | inxyda uden  | ,          | Г '             | Куда посп | ynaer       | ,            | Данные провод                           | NUKO         |           |      | Логичний    |
| Aca                   | проводника  | Поз<br>обозначение | Kov-<br>novn | Соединение | /bs<br>ofcorare | HLE DE    | 91-<br>(17) | Соединие     | Марка                                   | Сечение, нег | Длина, нн | Цвет | / димениное |
|                       |             |                    |              |            |                 |           | Х           | 'S1 (СНЦ144Д | -22/13P011-AWIU                         |              |           |      |             |
| Day.                  | W4-1        | 12X                | 1            | Обжин      | 4XS1            | - 2       | 7           | Обхин        | ΠΕΠΦ1130-212-112-115lxQ35-6-600         | 0.35         | 1140      | Б    | 0           |
| *                     | W9-1        | XS1                | 22           | Обжин      | 4XS1            |           | ¥.          | Обжин        |                                         | 0,35         | 1140      | Б    | Γû          |
| and a                 | W9-2        | XS1                | 21           | Обжин      | 4XS1            | 1         | 2           | Обжин        | ΠΕΠΦΛ30-223-213-3ΙΕ,Ε/Γ,Ε/ΧΙΧΟ,35-6-600 | 0,35         | 1140      | BC   | / i i       |
|                       | W9-3        | 12X                | 20           | Обжин      | 4XS1            |           | 5           | Обжин        |                                         | 0,35         | 1140      | 6X   | ] [         |
| (ano                  | W10-1       | XS1                | 17           | Обжин      | 43/51           |           |             | Обжин        |                                         | 0,35         | 1140      | Б    | Γû          |
|                       | W10-2       | XS1                | 18           | Обжин      | 4XS1            |           | 3           | Обжин        | ΠΕΠΦΑ30-223-213-315,6/T,6/X0x0,35-6-600 | 0,35         | 1140      | BC . | /ii         |
|                       | W10-3       | XS1                | 19           | Обжин      | 4XS1            |           | ?           | Обжин        |                                         | 0.35         | 1140      | 6X   | ] [         |
| $\Delta$              | W16-1       | XS1                | 15           | Обжин      | 5091            |           | 5           | Обжин        | ΠΕΠΦι/30-223-213-2ΙΕ.Ε/Πι/0.35-6-600    | 0,00         | 1030      | Б    | [[          |
|                       | W16-2       | XS1                | 16           | Обжин      | 5XP1            |           | 2           | Обжин        | TBTW100-223-213-210,0/1740,33-0-000     | 0,00         | 1030      | BC   | ] [         |
| 5                     | W18-1       | XS1                | 12           | Обжин      | 4XS1            |           | 9           | Обжин        | ΠΕΠΦι/30-223-213-216-6/Th/0.35-6-600    | 0,00         | 1140      | Б    | $f(\cdot)$  |
| 0                     | W18-2       | XS1                | #            | Обжин      | 4XS1            | 2         | v           | Обжин        | 1814130-223-213-21(8) 1710,33-0-000     | 0,00         | 1140      | EC.  | ] [         |
| $\mathcal{Z}$         | W19-1       | XS1                | 9            | Обжин      | 4XS1            |           | 1           | Обжин        | ΠΕΠΦικ30-223-213-215.Ε/Πικ0.35-6-600    | 0,00         | 1140      | Б    | T.O.        |
| 53                    | W19-2       | XS1                | 10           | Обжин      | 4XS1            | 1         | 8           | Обжин        | 1614100-225-215-21(0)/12(0)5-0-000      | 0,00         | 1140      | EC.  | ] [         |
| AC [[6.1000.250.00T34 | W20-1       | XS1                | 8            | Обжин      | 5091            |           | ۲           | Обжин        |                                         | 0,35         | 1030      | Б    | ſû          |
| $\mathcal{C}$         | W20-2       | 12X                | 7            | Обжин      | 5091            |           | /           | Обжин        | ΠΕΠΦπ30-223-213-315,Б/Γ,Б/X0x0,35-6-600 | 0,35         | 1030      | BC   | / i i       |
| IJ                    | W20-3       | XS1                | 6            | Обжин      | 5091            | 1         | Y           | Обжин        |                                         | 0,35         | 1030      | EX.  | ] (         |
| 4                     | W21-1       | XS1                | 5            | Обжин      | 4XS1            | 1         | 0           | Обжин        | ΠΕΠΦ1:30-212-112-16[x0,35-6-600         | 0,35         | 1140      | Б    | C           |
|                       |             |                    |              |            |                 |           | Ι           |              |                                         |              |           |      |             |
| -                     |             |                    |              |            |                 | $\perp$   | Ι           |              |                                         |              |           |      |             |
| 2                     |             |                    |              |            |                 |           | Т           |              |                                         |              |           |      |             |





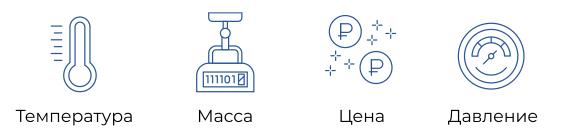


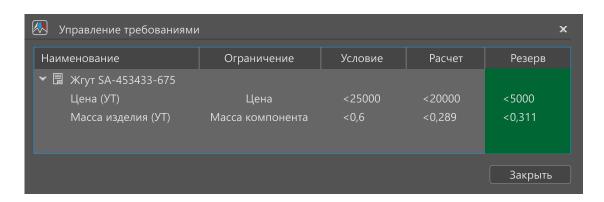



- Поставка с набором распространенных компонентов
- Синхронизация с единой АСУ НСИ заказчика
- Конвертация из аналогичных систем
- Импорт из табличных данных
- Пополнение и модификация с помощью модуля администрирования

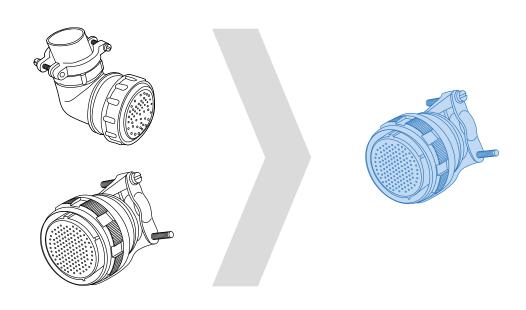





### Управление требованиями





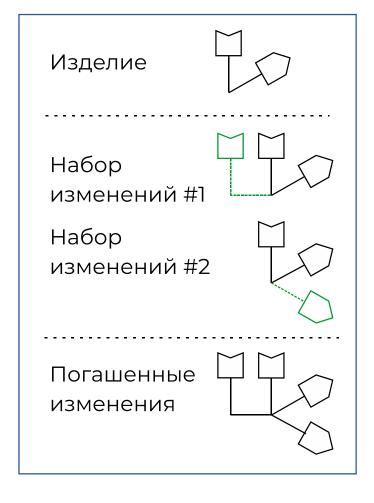


САПР «Макс» позволяет осуществлять мониторинг параметров разрабатываемого изделия (таких как масса, стоимость и др.) на протяжении всего процесса проектирования. Автоматическое формирование ограничительного перечня ПКИ и материалов с учетом ВВФ и условий проекта.

#### Проектирование под требования

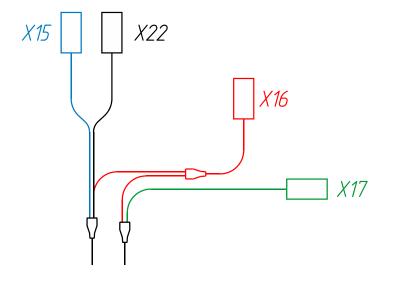




# Формирование перечня-ограничителя по условиям эксплуатации





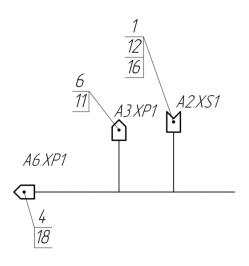






# Версирование

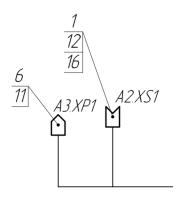


# Индикация изменений

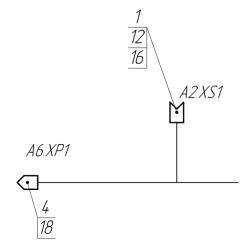



- Элемент добавлен
- Элемент удален
- Элемент перемещен
- Элемент не изменен






# Обобщенный состав




| именование       | Тип                       | 00_Подсистема |
|------------------|---------------------------|---------------|
| ъ Отсек А        |                           |               |
| ✓ "В Жгут 250    | АСДБ.1000.250.00          |               |
| > 🖾 A1.XP1       | СНЦ144Д-13/11BO11-NWK     | 01-И1         |
| > 🖆 A2.XS1       | СНЦ144Д-26/17PO11-NWK     |               |
| > 🖾 A3.XP1       | СНЦ144Д-8/17PO11-NWK      | 02-И1         |
| > 🖆 A4.XS1       | СНЦ144Д-22/13PO11-AWK     | 01-И2         |
| > 🖾 A5.XP1       | СНЦ144Д-11/19BO11-NWK     |               |
| > 🖾 A6.XP1       | СНЦ147Д-19/22ВО11-6Е3Ѕ    | O2-W2         |
| > 🖾 XP2          | СНЦ144Д-22/13BO11-NWП     |               |
| > 🖾 XP4          | СНЦ147ДМ-7/14BO11-NE0S    |               |
| > 🟝 XS1          | СНЦ144Д-22/13PO11-AWП     |               |
| > 🔥 W1           | ПБПФл-112-1(Б)х0.35-Б-600 | 01-И2         |
| > 🚺 W2           | ПБПФл-112-1(Б)х0.35-Б-600 | 01-И1         |
| > <b>t</b> fi w3 | ПБПФл-112-1(Б)х0,35-Б-600 |               |

# Конфигурация конкретного изделия



| Наиме | енова  | ние         | Тип                       | 00_Подсистема |  |
|-------|--------|-------------|---------------------------|---------------|--|
| ~ "Î  |        | сек А       |                           |               |  |
| ~     | · "Lij | Жгут 250    | АСДБ.1000.250.00          |               |  |
|       | >      | A1.XP1      | СНЦ144Д-13/11BO11-NWK     | 01-И1         |  |
|       | >      | 🖺 A2.XS1    | СНЦ144Д-26/17PO11-NWK     |               |  |
|       | >      | 🖺 A3.XP1    | СНЦ144Д-8/17PO11-NWK      | 02-И1         |  |
|       |        | ▲ A4.XS1    | СНЦ144Д-22/13PO11-AWK     | 01-И2         |  |
|       | >      | A5.XP1      | СНЦ144Д-11/19BO11-NWK     |               |  |
|       |        | ▲ A6.XP1    | СНЦ147Д-19/22ВО11-6Е3Ѕ    | 02-И2         |  |
|       | >      | XP2         | СНЦ144Д-22/13BO11-NWП     |               |  |
|       | >      | 🖾 XP4       | СНЦ147ДМ-7/14BO11-NE0S    |               |  |
|       | >      | 🖾 XS1       | СНЦ144Д-22/13PO11-AWП     |               |  |
|       |        | <b>₩</b> W1 | ПБПФл-112-1(Б)х0.35-Б-600 | 01-И2         |  |
|       | >      | <b>₩</b> 2  | ПБПФл-112-1(Б)х0.35-Б-600 | 01-И1         |  |
|       | >      | <b>₩</b> 3  | ПБПФл-112-1(Б)х0.35-Б-600 |               |  |



| именование<br>"Ш Отсек A    | Тип                       | 00_Подсистема |
|-----------------------------|---------------------------|---------------|
| "Ш Отсек А<br>∨ "Ш Жгут 250 | АСДБ.1000.250.00          |               |
| ▲ A1.XP1                    | СНЦ144Д-13/11BO11-NWK     | 01-И1         |
| > 📇 A2.XS1                  | СНЦ144Д-26/17PO11-NWK     |               |
|                             | СНЦ144Д-8/17PO11-NWK      | 02-И1         |
| > 📇 A4.XS1                  | СНЦ144Д-22/13PO11-AWK     | 01-И2         |
| > 🖾 A5.XP1                  | СНЦ144Д-11/19BO11-NWK     |               |
| > 🖾 A6.XP1                  | СНЦ147Д-19/22ВО11-6Е3Ѕ    | 02-И2         |
| > 🖾 XP2                     | СНЦ144Д-22/13ВО11-NWП     |               |
| > 🖾 XP4                     | СНЦ147ДМ-7/14BO11-NE0S    |               |
| > 🖾 XS1                     | СНЦ144Д-22/13PO11-AWП     |               |
| > 🕠 w1                      | ПБПФл-112-1(Б)х0.35-Б-600 | 01-И2         |
| <b>(</b> 1) W2              | ПБПФл-112-1(Б)х0.35-Б-600 | 01-И1         |
| > tn w3                     | ПБПФл-112-1(Б)х0.35-Б-600 |               |



#### Проверки и расчеты





- контроль сечений подключаемых жил проводов;
- контроль сочленяемости ответных частей соединителя;

🗸 🗹 Проверка изделия на соответствие схемам

Удельное

сопротивление

[OM/KM]

Сопротивление

4,967

0.008

0,008

Допустимое

падение

напряжения

1,4901

0,0024

Закрыть

- контроль соответствия подключений проводов и линий связи;
- контроль диаметра корпуса соединителя диаметру отвода жгута;

Проверки

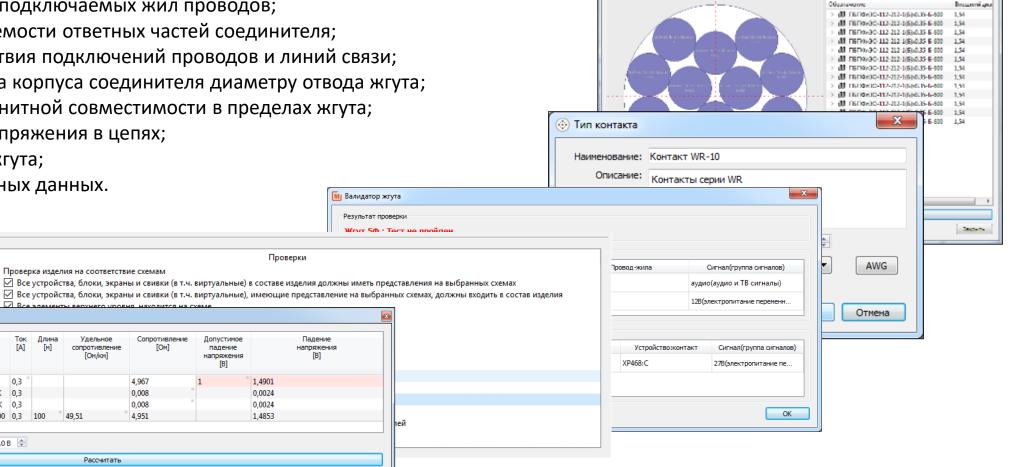
- расчет электромагнитной совместимости в пределах жгута;
- расчет падения напряжения в цепях;

Ошибки

• расчет диаметра жгута;

Расчёт падения напряжения

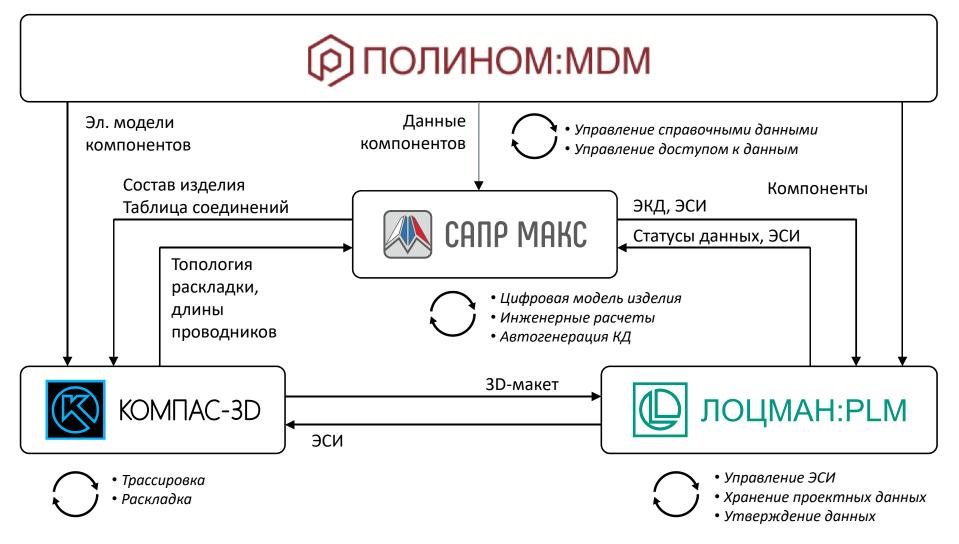
• валидация проектных данных.


Условное обозначение

СНЦ144Д-22/13PO11-AWK

Допустимое падение напряжения (по умолчанию) 10,0 В

СНЦ144Д-13/11BO11-NWK 0,3


ПБПФл-112-1(Б)х0.35-Б-600 0.3 100

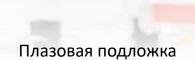


Расчет диаметра жгута





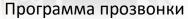









# **МАКС.**Технолог





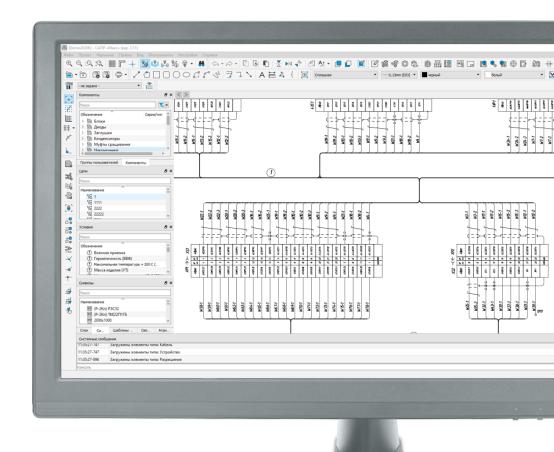



Программа нарезки и маркировки проводов








Расчет количества и типоразмера бирок, файл для печати бирок

# Преимущества Решений АО «Цифровая мануфактура»





- Работа **с единой моделью данных** от объектов головных изделий до уровня печатной платы (Единая среда электрического проектирования)
- Разработаны под требования российских предприятий
- Разработаны с учетом собственного многолетнего опыта проектирования
- Разработчик и техподдержка **находится в РФ** и работает исключительно на нужды российских предприятий
- Участие в комплексном импортозамещении с отечественными разработчиками
- Внесены в Реестр российского ПО
- Используется СУБД PostgreSQL
- Имеют клиент-серверную архитектуру, которая позволяет снизить затраты на покупку и поддержку программно-аппаратной инфраструктуры предприятия и уменьшает стоимость использования ПО





Цифровая Трансформация. Успешная. Эффективная.